Brassinosteroid functions in Arabidopsis seed development
نویسندگان
چکیده
Seed development of flowering plant is a complicated process controlled by a signal network. Double fertilization generates 2 zygotic products (embryo and endosperm). Embryo gives rise to a daughter plant while endosperm provides nutrients for embryo during embryogenesis and germination. Seed coat differentiates from maternally derived integument and encloses embryo and endosperm. Seed size/mass and number comprise final seed yield, and seed shape also contributes to seed development and weight. Seed size is coordinated by communication among endosperm, embryo, and integument. Seed number determination is more complex to investigate and shows differences between monocot and eudicot. Total seed number depends on sillique number and seed number per sillique in Arabidopsis. Seed comes from fertilized ovule, hence the ovule number per flower determines the maximal seed number per sillique. Early studies reported that engineering BR levels increased the yield of ovule and seed; however the molecular mechanism of BR regulation in seed development still remained unclear. Our recent studies demonstrated that BR regulated seed size, shape, and number by transcriptionally modulating specific seed developmental pathways. This review summarizes roles of BR in Arabidopsis seed development and gives clues for future application of BR in agricultural production.
منابع مشابه
RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis.
The scaffold protein RACK1 (Receptor for Activated C Kinase 1) serves as an integrative point for diverse signal transduction pathways. The Arabidopsis genome contains three RACK1 orthologues, however, little is known about their functions. It is reported here that one member of this gene family, RACK1A, previously identified as the Arabidopsis homologue of the tobacco arcA gene, mediates hormo...
متن کاملBrassinosteroid regulates seed size and shape in Arabidopsis.
Seed development is important for agriculture productivity. We demonstrate that brassinosteroid (BR) plays crucial roles in determining the size, mass, and shape of Arabidopsis (Arabidopsis thaliana) seeds. The seeds of the BR-deficient mutant de-etiolated2 (det2) are smaller and less elongated than those of wild-type plants due to a decreased seed cavity, reduced endosperm volume, and integume...
متن کاملMultifunctionality of the LEC1 transcription factor during plant development
LEC1 acts as a key regulator of embryogenesis in Arabidopsis thaliana, but is involved in a wide range of functions, all the way from embryo morphogenesis to seed maturation. New data show that LEC1, partially in conjunction with abscisic acid, affects auxin synthesis, and both brassinosteroid and light signaling. The phenotype of LEC1 overexpressors confirms LEC1's known participation in the r...
متن کاملManipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas
Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in cont...
متن کاملAn Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner.
The membrane-bound Brassinosteroid insensitive1-associated receptor kinase1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 act...
متن کامل